Society

Science And The Islamic World

With well over a billion Muslims and extensive material resources, why is the Islamic world disengaged from science and the process of creating new knowledge? It was not always this way.

Advertisement

Science And The Islamic World
info_icon

This article grew out of the Max von Laue Lecture that I delivered earlier this year to celebrate that eminent physicist and man of strong social conscience. When Adolf Hitler was on the ascendancy, Laue was one of the very few German physicists of stature who dared to defend Albert Einstein and the theory of relativity. It therefore seems appropriate that a matter concerning science and civilization should be my concern here.

The question I want to pose--perhaps as much to myself as to anyone else--is this: With well over a billion Muslims and extensive material resources, why is the Islamic world disengaged from science and the process of creating new knowledge? To be definite, I am here using the 57 countries of the Organization of the Islamic Conference (OIC) as a proxy for the Islamic world.

It was not always this way. Islam's magnificent Golden Age in the 9th–13th centuries brought about major advances in mathematics, science, and medicine. The Arabic language held sway in an age that created algebra, elucidated principles of optics, established the body's circulation of blood, named stars, and created universities. But with the end of that period, science in the Islamic world essentially collapsed. No major invention or discovery has emerged from the Muslim world for well over seven centuries now. That arrested scientific development is one importantelement--although by no means the only one--that contributes to the present marginalization of Muslims and a growing sense of injustice and victimhood.

Such negative feelings must be checked before the gulf widens further. A bloody clash of civilizations, should it actually transpire, will surely rank along with the two other most dangerous challenges to life on ourplanet--climate change and nuclear proliferation.

Advertisement

First encounters

Islam's encounter with science has had happy and unhappy periods. There was no science in Arab culture in the initial period of Islam, around 610 AD. But as Islam established itself politically and militarily, its territory expanded. In the mid-eighth century, Muslim conquerors came upon the ancient treasures of Greek learning. Translations from Greek into Arabic were ordered by liberal and enlightened caliphs, who filled their courts in Baghdad with visiting scholars from near and far. Politics was dominated by the rationalist Mutazilites, who sought to combine faith and reason in opposition to their rivals, the dogmatic Asharites. A generally tolerant and pluralistic Islamic culture allowed Muslims, Christians, and Jews to create new works of art and science together. But over time, the theological tensions between liberal and fundamentalist interpretations ofIslam--such as on the issue of free will versus predestination--became intense and turned bloody. A resurgent religious orthodoxy eventually inflicted a crushing defeat on the Mutazilites. Thereafter, the open-minded pursuits of philosophy, mathematics, and science were increasingly relegated to the margins ofIslam. 1

A long period of darkness followed, punctuated by occasional brilliant spots. In the 16th century, the Turkish Ottomans established an extensive empire with the help of military technology.

Advertisement

info_icon


Ottoman Empire astronomers working in 1577 at an observatory in Istanbul. This painting accompanied an epic poem that honored Sultan Murad III, who ruled from 1574 to 1595. The observatory was demolished in 1580 after astronomers sighted a comet and predicted a military victory that failed to materialize. The poem was published a year later. (For more on ancient Islamic astronomy, see the American Institute of Physics online cosmologyexhibit)

But there was little enthusiasm for science and new knowledge. In the 19th century, the European Enlightenment inspired a wave of modernist Islamic reformers: Mohammed Abduh of Egypt, his follower Rashid Rida from Syria, and their counterparts on the Indian subcontinent, such as Sayyid Ahmad Khan and Jamaluddin Afghani, exhorted their fellow Muslims to accept ideas of the Enlightenment and the scientific revolution. Their theological position can be roughly paraphrased as, "The Qur'an tells us how to go to heaven, not how the heavens go." That echoed Galileo earlier in Europe.

The 20th century witnessed the end of European colonial rule and the emergence of several new independent Muslim states, all initially under secular national leaderships. A spurt toward modernization and the acquisition of technology followed. Many expected that a Muslim scientific renaissance would ensue. Clearly, it did not.

What ails science in the Muslim world?

Muslim leaders today, realizing that military power and economic growth flow from technology, frequently call for speedy scientific development and a knowledge-based society. Often that call is rhetorical, but in some Muslimcountries--Qatar, the United Arab Emirates (UAE), Pakistan, Malaysia, Saudi Arabia, Iran, and Nigeria amongothers--official patronage and funding for science and education have grown sharply in recent years. Enlightened individual rulers, including Sultan ibn Muhammad Al-Qasimi of Sharjah, Hamad bin Khalifa Al Thani of Qatar, and others have put aside some of their vast personal wealth for such causes. No Muslim leader has publicly called for separating science from religion.

Is boosting resource allocations enough to energize science, or are more fundamental changes required? Scholars of the 19th century, such as the pioneering sociologist Max Weber, claimed that Islam lacks an "idea system" critical for sustaining a scientific culture based on innovation, new experiences, quantification, and empirical verification. Fatalism and an orientation toward the past, they said, makes progress difficult and even undesirable.

In the current epoch of growing antagonism between the Islamic and the Western worlds, most Muslims reject such charges with angry indignation. They feel those accusations add yet another excuse for the West to justify its ongoing cultural and military assaults on Muslim populations. Muslims bristle at any hint that Islam and science may be at odds, or that some underlying conflict between Islam and science may account for the slowness of progress. The Qur'an, being the unaltered word of God, cannot be at fault: Muslims believe that if there is a problem, it must come from their inability to properly interpret and implement the Qur'an's divine instructions.

In defending the compatibility of science and Islam, Muslims argue that Islam had sustained a vibrant intellectual culture throughout the European Dark Ages and thus, by extension, is also capable of a modern scientific culture. The Pakistani physics Nobel Prize winner, Abdus Salam, would stress to audiences that one-eighth of the Qur'an is a call for Muslims to seek Allah's signs in the universe and hence that science is a spiritual as well as a temporal duty for Muslims. Perhaps the most widely used argument one hears is that the Prophet Muhammad had exhorted his followers to "seek knowledge even if it is in China," which implies that a Muslim is duty-bound to search for secular knowledge.

Such arguments have been and will continue to be much debated, but they will not be pursued further here. Instead, let us seek to understand the state of science in the contemporary Islamic world. First, to the degree that available data allows, I will quantitatively assess the current state of science in Muslim countries. Then I will look at prevalent Muslim attitudes toward science, technology, and modernity, with an eye toward identifying specific cultural and social practices that work against progress. Finally, we can turn to the fundamental question: What will it take to bring science back into the Islamic world?

Advertisement

Measuring Muslim scientific progress

The metrics of scientific progress are neither precise nor unique. Science permeates our lives in myriad ways, means different things to different people, and has changed its content and scope drastically over the course of history. In addition, the paucity of reliable and current data makes the task of assessing scientific progress in Muslim countries still harder.

I will use the following reasonable set of four metrics:

  • The quantity of scientific output, weighted by some reasonable measure of relevance and importance;
  • The role played by science and technology in the national economies, funding for S&T, and the size of the national scientific enterprises;
  • The extent and quality of higher education; and
  • The degree to which science is present or absent in popular culture.

Advertisement

Scientific output

A useful, if imperfect, indicator of scientific output is the number of published scientific research papers, together with the citations to them. Table 1 shows the output of the seven most scientifically productive Muslim countries for physics papers, over the period from 1 January 1997 to 28 February 2007, together with the total number of publications in all scientific fields. A comparison with Brazil, India, China, and the US reveals significantly smaller numbers. A study by academics at the International Islamic University Malaysia2 showed that OIC countries have 8.5 scientists, engineers, and technicians per 1000 population, compared with a world average of 40.7, and 139.3 for countries of the Organisation for Economic Co-operation and Development. (For more on the OECD, see http://www.oecd.org.) Forty-six Muslim countries contributed 1.17% of the world's science literature, whereas 1.66% came from India alone and 1.48% from Spain. Twenty Arab countries contributed 0.55%, compared with 0.89% by Israel alone. The US NSF records that of the 28 lowest producers of scientific articles in 2003, half belong to the OIC.3

The situation may be even grimmer than the publication numbers or perhaps even the citation counts suggest. Assessing the scientific worth ofpublications--never an easy task--is complicated further by the rapid appearance of new international scientific journals that publish low-quality work. Many have poor editorial policies and refereeing procedures. Scientists in many developing countries, who are under pressure to publish, or who are attracted by strong government incentives, choose to follow the path of least resistance paved for them by the increasingly commercialized policies of journals. Prospective authors know that editors need to produce a journal of a certain thickness every month. In addition to considerable anecdotal evidence for these practices, there have been a few systematic studies. For example,4 chemistry publications by Iranian scientists tripled in five years, from 1040 in 1998 to 3277 in 2003. Many scientific papers that were claimed as original by their Iranian chemist authors, and that had been published in internationally peer-reviewed journals, had actually been published twice and sometimes thrice with identical or nearly identical contents by the same authors. Others were plagiarized papers that could have been easily detected by any reasonably careful referee.

The situation regarding patents is also discouraging: The OIC countries produce negligibly few. According to official statistics, Pakistan has produced only eight patents in the past 43 years.

Islamic countries show a great diversity of cultures and levels of modernization and a correspondingly large spread in scientific productivity. Among the largercountries--in both population and political importance--Turkey, Iran, Egypt, and Pakistan are the most scientifically developed. Among the smaller countries, such as the central Asian republics, Uzbekistan and Kazakhstan rank considerably above Turkmenistan, Tajikistan, andKyrgyzstan. Malaysia--a rather atypical Muslim country with a 40% non-Muslimminority--is much smaller than neighboring Indonesia but is nevertheless more productive. Kuwait, Saudi Arabia, Qatar, the UAE, and other states that have many foreign scientists are scientifically far ahead of other Arab states.

Advertisement

National scientific enterprises

Conventional wisdom suggests that bigger science budgets indicate, or will induce, greater scientific activity. On average, the 57 OIC states spend an estimated 0.3% of their gross national product on research and development, which is far below the global average of 2.4%. But the trend toward higher spending is unambiguous. Rulers in the UAE and Qatar are building several new universities with manpower imported from the West for both construction and staffing. In June 2006, Nigeria's president Olusegun Obasanjo announced he will plow $5 billion of oil money into R&D. Iran increased its R&D spending dramatically, from a pittance in 1988 at the end of the Iraq–Iran war, to a current level of 0.4% of its gross domestic product. Saudi Arabia announced that it spent 26% of its development budget on science and education in 2006, and sent 5000 students to US universities on full scholarships. Pakistan set a world record by increasing funding for higher education and science by an immense 800% over the past five years.

But bigger budgets by themselves are not a panacea. The capacity to put those funds to good use is crucial. One determining factor is the number of available scientists, engineers, and technicians. Those numbers are low for OIC countries, averaging around 400–500 per million people, while developed countries typically lie in the range of 3500–5000 per million. Even more important are the quality and level of professionalism, which are less easily quantifiable. But increasing funding without adequately addressing such crucial concerns can lead to a null correlation between scientific funding and performance.

Advertisement

info_icon
info_icon

The role played by science in creating high technology is an important science indicator. ComparingTable 1 with Table 2 shows there is little correlation between academic research papers and the role of S&T in the national economies of the seven listed countries. The anomalous position of Malaysia in table 2 has its explanation in the large direct investment made by multinational companies and in having trading partners that are overwhelmingly non-OIC countries.

Although not apparent in Table 2, there are scientific areas in which research has paid off in the Islamic world. Agriculturalresearch--which is relatively simple science--provides one case in point. Pakistan has good results, for example, with new varieties of cotton, wheat, rice, and tea. Defense technology is another area in which many developing countries have invested, as they aim to both lessen their dependence on international arms suppliers and promote domestic capabilities. Pakistan manufactures nuclear weapons and intermediate-range missiles. There is now also a burgeoning, increasingly export-oriented Pakistani arms industry that turns out a large range of weapons from grenades to tanks, night-vision devices to laser-guided weapons, and small submarines to training aircraft. Export earnings exceed $150 million yearly. Although much of the production is a triumph of reverse engineering rather than original research and development, there is clearly sufficient understanding of the requisite scientific principles and a capacity to exercise technical and managerial judgment as well. Iran has followed Pakistan's example.

Advertisement

Higher education

According to a recent survey, among the 57 member states of the OIC, there are approximately 1800 universities.5 Of those, only 312 publish journal articles. A ranking of the 50 most published among them yields these numbers: 26 are in Turkey, 9 in Iran, 3 each in Malaysia and Egypt, 2 in Pakistan, and 1 in each of Uganda, the UAE, Saudi Arabia, Lebanon, Kuwait, Jordan, and Azerbaijan. For the top 20 universities, the average yearly production of journal articles was about 1500, a small but reasonable number. However, the average citation per article is less than 1.0 (the survey report does not state whether self-citations were excluded). There are fewer data available for comparing against universities worldwide. Two Malaysian undergraduate institutions were in the top-200 list of the Times Higher Education Supplement in 2006.No OIC university made the top-500 "Academic Ranking of World Universities" compiled by Shanghai Jiao Tong University. This state of affairs led the director general of the OIC to issue an appeal for at least 20 OIC universities to be sufficiently elevated in quality to make the top-500 list. No action plan was specified, nor was the term "quality" defined.

An institution's quality is fundamental, but how is it to be defined? Providing more infrastructure and facilities is important but not key. Most universities in Islamic countries have a starkly inferior quality of teaching and learning, a tenuous connection to job skills, and research that is low in both quality and quantity. Poor teaching owes more to inappropriate attitudes than to material resources. Generally, obedience and rote learning are stressed, and the authority of the teacher is rarely challenged. Debate, analysis, and class discussions are infrequent.

Academic and cultural freedoms on campuses are highly restricted in most Muslim countries. At Quaid-i-Azam University in Islamabad, where I teach, the constraints are similar to those existing in most other Pakistani public-sector institutions. This university serves the typical middle-class Pakistani student and, according to the survey referred to earlier,5 ranks number two among OIC universities. Here, as in other Pakistani public universities, films, drama, and music are frowned on, and sometimes even physical attacks by student vigilantes who believe that such pursuits violate Islamic norms take place. The campus has three mosques with a fourth one planned, but no bookstore. No Pakistani university, including QAU, allowed Abdus Salam to set foot on its campus, although he had received the Nobel Prize in 1979 for his role in formulating the standard model of particle physics. The Ahmedi sect to which he belonged, and which had earlier been considered to be Muslim, was officially declared heretical in 1974 by the Pakistani government.

As intolerance and militancy sweep across the Muslim world, personal and academic freedoms diminish with the rising pressure to conform. In Pakistani universities, the veil is now ubiquitous, and the last few unveiled women students are under intense pressure to cover up. The head of the government-funded mosque-cum-seminary (figure 4) in the heart of Islamabad, the nation's capital, issued the following chilling warning to my university's female students and faculty on his FM radio channel on 12 April 2007:

Advertisement

The government should abolish co-education.

Tags

    Advertisement

    Advertisement

    Advertisement

    Advertisement

    Advertisement

    Advertisement